Goto

Collaborating Authors

 Vital Signs


Checklist

Neural Information Processing Systems

For all authors... (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? If you ran experiments... (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? CUB-2011 has no human subjects. If you used crowdsourcing or conducted research with human subjects... (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? This early warning score (EWS) dataset is built on real patient data recorded in hospitals.


Feature-Enhanced Machine Learning for All-Cause Mortality Prediction in Healthcare Data

arXiv.org Machine Learning

Accurate patient mortality prediction enables effective risk stratification, leading to personalized treatment plans and improved patient outcomes. However, predicting mortality in healthcare remains a significant challenge, with existing studies often focusing on specific diseases or limited predictor sets. This study evaluates machine learning models for all-cause in-hospital mortality prediction using the MIMIC-III database, employing a comprehensive feature engineering approach. Guided by clinical expertise and literature, we extracted key features such as vital signs (e.g., heart rate, blood pressure), laboratory results (e.g., creatinine, glucose), and demographic information. The Random Forest model achieved the highest performance with an AUC of 0.94, significantly outperforming other machine learning and deep learning approaches. This demonstrates Random Forest's robustness in handling high-dimensional, noisy clinical data and its potential for developing effective clinical decision support tools. Our findings highlight the importance of careful feature engineering for accurate mortality prediction. We conclude by discussing implications for clinical adoption and propose future directions, including enhancing model robustness and tailoring prediction models for specific diseases.


Knowledge-Empowered Dynamic Graph Network for Irregularly Sampled Medical Time Series

Neural Information Processing Systems

Irregularly Sampled Medical Time Series (ISMTS) are commonly found in the healthcare domain, where different variables exhibit unique temporal patterns while interrelated. However, many existing methods fail to efficiently consider the differences and correlations among medical variables together, leading to inadequate capture of fine-grained features at the variable level in ISMTS. We propose Knowledge-Empowered Dynamic Graph Network (KEDGN), a graph neural network empowered by variables' textual medical knowledge, aiming to model variable-specific temporal dependencies and inter-variable dependencies in ISMTS. Specifically, we leverage a pre-trained language model to extract semantic representations for each variable from their textual descriptions of medical properties, forming an overall semantic view among variables from a medical perspective. Based on this, we allocate variable-specific parameter spaces to capture variable-specific temporal patterns and generate a complete variable graph to measure medical correlations among variables. Additionally, we employ a density-aware mechanism to dynamically adjust the variable graph at different timestamps, adapting to the time-varying correlations among variables in ISMTS. The variable-specific parameter spaces and dynamic graphs are injected into the graph convolutional recurrent network to capture intra-variable and inter-variable dependencies in ISMTS together. Experiment results on four healthcare datasets demonstrate that KEDGN significantly outperforms existing methods.


Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement, Josh Fromm 3, Daniel McDuff 2

Neural Information Processing Systems

Telehealth and remote health monitoring have become increasingly important during the SARS-CoV-2 pandemic and it is widely expected that this will have a lasting impact on healthcare practices. These tools can help reduce the risk of exposing patients and medical staff to infection, make healthcare services more accessible, and allow providers to see more patients. However, objective measurement of vital signs is challenging without direct contact with a patient. We present a videobased and on-device optical cardiopulmonary vital sign measurement approach. It leverages a novel multi-task temporal shift convolutional attention network (MTTS-CAN) and enables real-time cardiovascular and respiratory measurements on mobile platforms. We evaluate our system on an Advanced RISC Machine (ARM) CPU and achieve state-of-the-art accuracy while running at over 150 frames per second which enables real-time applications. Systematic experimentation on large benchmark datasets reveals that our approach leads to substantial (20%-50%) reductions in error and generalizes well across datasets.


MobiVital: Self-supervised Time-series Quality Estimation for Contactless Respiration Monitoring Using UWB Radar

arXiv.org Artificial Intelligence

Respiration waveforms are increasingly recognized as important biomarkers, offering insights beyond simple respiration rates, such as detecting breathing irregularities for disease diagnosis or monitoring breath patterns to guide rehabilitation training. Previous works in wireless respiration monitoring have primarily focused on estimating respiration rate, where the breath waveforms are often generated as a by-product. As a result, issues such as waveform deformation and inversion have largely been overlooked, reducing the signal's utility for applications requiring breathing waveforms. To address this problem, we present a novel approach, MobiVital, that improves the quality of respiration waveforms obtained from ultra-wideband (UWB) radar data. MobiVital combines a self-supervised autoregressive model for breathing waveform extraction with a biology-informed algorithm to detect and correct waveform inversions. To encourage reproducible research efforts for developing wireless vital signal monitoring systems, we also release a 12-person, 24-hour UWB radar vital signal dataset, with time-synchronized ground truth obtained from wearable sensors. Our results show that the respiration waveforms produced by our system exhibit a 7-34% increase in fidelity to the ground truth compared to the baselines and can benefit downstream tasks such as respiration rate estimation.


BPQA Dataset: Evaluating How Well Language Models Leverage Blood Pressures to Answer Biomedical Questions

arXiv.org Artificial Intelligence

Clinical measurements such as blood pressures and respiration rates are critical in diagnosing and monitoring patient outcomes. It is an important component of biomedical data, which can be used to train transformer-based language models (LMs) for improving healthcare delivery. It is, however, unclear whether LMs can effectively interpret and use clinical measurements. We investigate two questions: First, can LMs effectively leverage clinical measurements to answer related medical questions? Second, how to enhance an LM's performance on medical question-answering (QA) tasks that involve measurements? We performed a case study on blood pressure readings (BPs), a vital sign routinely monitored by medical professionals. We evaluated the performance of four LMs: BERT, BioBERT, MedAlpaca, and GPT-3.5, on our newly developed dataset, BPQA (Blood Pressure Question Answering). BPQA contains $100$ medical QA pairs that were verified by medical students and designed to rely on BPs . We found that GPT-3.5 and MedAlpaca (larger and medium sized LMs) benefit more from the inclusion of BPs than BERT and BioBERT (small sized LMs). Further, augmenting measurements with labels improves the performance of BioBERT and Medalpaca (domain specific LMs), suggesting that retrieval may be useful for improving domain-specific LMs.


Checklist

Neural Information Processing Systems

For all authors... (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? If you ran experiments... (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? CUB-2011 has no human subjects. If you used crowdsourcing or conducted research with human subjects... (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? This early warning score (EWS) dataset is built on real patient data recorded in hospitals.


CAND: Cross-Domain Ambiguity Inference for Early Detecting Nuanced Illness Deterioration

arXiv.org Artificial Intelligence

Early detection of patient deterioration is essential for timely treatment, with vital signs like heart rates being key health indicators. Existing methods tend to solely analyze vital sign waveforms, ignoring transition relationships of waveforms within each vital sign and the correlation strengths among various vital signs. Such studies often overlook nuanced illness deterioration, which is the early sign of worsening health but is difficult to detect. In this paper, we introduce CAND, a novel method that organizes the transition relationships and the correlations within and among vital signs as domain-specific and cross-domain knowledge. CAND jointly models these knowledge in a unified representation space, considerably enhancing the early detection of nuanced illness deterioration. In addition, CAND integrates a Bayesian inference method that utilizes augmented knowledge from domain-specific and cross-domain knowledge to address the ambiguities in correlation strengths. With this architecture, the correlation strengths can be effectively inferred to guide joint modeling and enhance representations of vital signs. This allows a more holistic and accurate interpretation of patient health. Our experiments on a real-world ICU dataset demonstrate that CAND significantly outperforms existing methods in both effectiveness and earliness in detecting nuanced illness deterioration. Moreover, we conduct a case study for the interpretable detection process to showcase the practicality of CAND.


This AI mirror could track your weight, blood pressure, sleep, and more

ZDNet

What if your mirror could show you more than just how you look? On Sunday at the Consumer Electronics Show (CES) in Las Vegas, health tech brand Withings unveiled Omnia, the company's conceptual mirror and smart scale device that uses artificial intelligence (AI) to analyze the figure it's reflecting, interpret data, and provide historical insights and health trends. Also: The Even Realities G1 are unlike any other smart glasses you've seen Omnia uses AI to interpret a person's heart health, nutrition, body composition, lung function, activity, and sleep, according to the press release. It's equipped with voice commands, a 3D body model, and multiple health sensors at its base. It seems like a user will step onto the part-mirror-part-scale, get scanned by the device, and view all kinds of data, including their resting and overnight heart rate, blood pressure, muscle-to-fat ratio, water mass, pH, and more.


User Authentication and Vital Signs Extraction from Low-Frame-Rate and Monochrome No-contact Fingerprint Captures

arXiv.org Artificial Intelligence

We present our work on leveraging low-frame-rate monochrome (blue light) videos of fingertips, captured with an off-the-shelf fingerprint capture device, to extract vital signs and identify users. These videos utilize photoplethysmography (PPG), commonly used to measure vital signs like heart rate. While prior research predominantly utilizes high-frame-rate, multi-wavelength PPG sensors (e.g., infrared, red, or RGB), our preliminary findings demonstrate that both user identification and vital sign extraction are achievable with the low-frame-rate data we collected. Preliminary results are promising, with low error rates for both heart rate estimation and user authentication. These results indicate promise for effective biometric systems. We anticipate further optimization will enhance accuracy and advance healthcare and security.